
Handler	java	android

	

https://queure.ru/c3?utm_term=handler+java+android






How	to	use	handler	in	android	java.	Android	java	handler	deprecated.	Timer	handler	java	android.	Handler	post	delay	android	java.	Handler	java	android	example.	Java.lang.runtimeexception	method	obtainmessage	in	android.os.handler	not	mocked.	Android	java	handler	postdelayed.	Android	java	completion	handler.

You	can	send	and	process	messages	and	objects	that	can	be	done	with	a	thread	associated	with	the	driver.	Each	copy	of	the	driver	is	bound	to	a	thread	and	a	line	of	that	thread.	When	you	create	a	new	pilot,	it	is	associated	with	the	cycle.	Presentation	of	messages	and	launches	to	LOOPOR	messages	and	executes	them	in	this	Looper	thread.
Controllers	have	two	basic	uses:	(1)	to	schedule	messages	and	launches	to	be	performed	at	some	time	in	the	future;	and	(2)	to	perform	an	action	that	needs	to	be	performed	on	your	feed.	By	sending	or	dispatching	the	handler,	you	can	allow	the	item	to	be	processed	as	soon	as	the	notification	line	is	ready	to	do	so,	or	indicate	the	delay	until	it	is
processed	or	an	absolute	processing	time.	The	last	two	let	you	implement	time,	marks,	and	other	time-based	actions.	When	your	program	has	a	process,	its	main	thread	is	to	start	a	message	queue	which	takes	care	of	managing	top-level	program	objects	(activities,	broadcast	listeners,	etc.)	and	any	windows	that	they	created.	You	can	create	your	own
threads	and	contact	the	main	thread	of	the	program	using	the	driver.	This	is	done	by	calling	the	same	message	or	SendMessage	methods	as	before,	but	from	a	new	thread.	The	executable	file	or	message	will	then	be	scheduled	to	be	scheduled	in	the	handler's	message	queue	and	possibly	processed.	The	Handler.Callback	controller	interface	can	use
the	Baldback	call	to	create	a	driver	to	avoid	implementing	the	optional	driver	subclass.	The	Controller()	This	constructor	is	no	longer	used.	Indirect	cycle	selection	during	driver	manager	can	cause	errors	when	surgery	is	quietly	lost	(if	manager	is	not	waiting	for	new	tasks	and	completion),	failures	(if	manager	is	created	in	thread	without	an	active
dummy	)	or	race	conditions.	Where	there	are	threads	where	the	operator	is	not	what	the	author	expected.	Instead,	use	the	executor	executor	or	clearly	indicate	the	loop	using	LOOPER	#getMainlooper,	{link	android.view.view	#Gethandler}	or	similar.	If	compatibility	is	required	for	a	supposed	thread	blocking	operation,	use	a	new	scanner	driver
(looner.mylooper()).	Handler	(Handler.Callback	Callback)	is	no	longer	used.	By	indirectly	choosing	a	loop	when	building	a	conductor,	errors	can	occur	when	the	surgery	is	quietly	lost	(if	the	manager	does	not	wait	for	new	tasks	and	leaves),	knocks	(if	the	director	isYou	can	use	the	service	routine	to	send	and	process	messages	and	to	process
executables	assigned	to	a	message	thread.	Each	service	routine	body	is	assigned	to	a	single	fiber	and	a	queue	of	that	fiber.	If	you	create	a	new	handler,	it	will	definitely	be	crazy.	Messages	and	start	are	delivered	to	this	loop's	queue	and	trigger	them	on	this	tap	thread.	A	single	service	program	has	two	main	applications:	(1)	future	scheduling	of
messages	and	boot	to	be	performed	at	a	specific	time;	and	(2)	an	operation	to	be	performed	on	a	thread	other	than	your	own	design.	When	posting	or	sending	to	a	service	routine,	you	can	allow	the	element	to	be	processed	as	soon	as	the	message	queue	is	ready,	or	introduce	a	delay	before	processing	or	an	absolute	processing	time.	With	the	latter
two,	you	can	implement	time	transitions,	virtues,	and	other	time-based	behaviors.	If	your	application	spawns	a	process,	the	main	thread	tends	to	run	a	message	queue	that	takes	care	of	managing	top-level	objects	(activities,	listeners,	etc.)	and	any	windows	you	create.	You	can	create	your	own	threads	and	loop	back	through	the	service	routine	with	the
application's	main	thread.	This	is	done	by	calling	the	same	input	methods	or	SendMessage	methods	as	before,	but	from	your	new	thread.	The	specified	start	or	message	is	then	queued	by	the	service	routine	and	processed	if	necessary.	Interface	handler.callback	callback.	Handler	()	This	constructor	was	deprecated.	In	addition,	getting	a	cock	during
the	handler	leads	to	errors	in	which	the	operation	is	calmly	lost	(if	the	handler	does	not	wait	for	new	tasks	and	completes),	drops	(if	the	handler	is	sometimes	activated	on	a	fiber	without	an	active	loop)	or	in	an	area	Race	conditions	or	race	conditions	where	the	fiber	is	associated	with	service	routine,	not	what	the	author	expected.	Use	a	bailiff	instead,
or	explicitly	loop	through	Looper#GetMainlooper,	{Android.view.view.View#Gethandler}	or	similar.	If	indirect	current	is	required	for	compatibility,	local	behavior	is	required	to	find	out	readers,	use	a	new	controller	(Looper.Myloop()).	Handler	(handler	handler.	Effects	on	the	rooster	selection	during	handler	construction	can	cause	an	error	if	the
operation	is	lost	peacefully	(unless	the	handler	waits	for	new	tasks	and	fills)	crashes	(if	the	handler	is	a	handlerAn	office	built	in	wireless	fiber)	or	a	workstation	attached	to	a	processor	is	not	what	the	author	represents.	Use	the	executive	instead	or	type	looper#getMainlooper,	{link	android.view.view#gethandler}.	If	implicit	parts	are	required	for
compatibility,	use	the	reader	new	processor	(looper.mylooper(),	Back	Search).	Repeating	Area	Repeating	Area	use	a	repeating	area	instead	of	the	default	value.	Handler	(Looper	Looper,	Handler.Callback	Search	-Return)	Instead	of	the	default	value,	use	the	specified	looper	and	take	the	callback	interface	for	message	processing.	Static	Managers	-
Kreareasync	(Looper	Looper,	Handler.Callback	-loorkup)	sent	messages	and	created	a	new	processor	that	is	not	subject	to	sync	barriers	such	as	executables,	VSYNC.	Static	Managers	-Create	fallback	messages	(looper	looper)	and	create	a	new	processor	that	is	not	subject	to	sync	barriers	such	as	executables,	vsync.	Use	MessingMessage	Message
Message	(MSG	Message)	here.	Final	Void	Casting	(PW	printer,	String	Pull)	Final	Looper	Getlooper	()	String	getMessageName	(message	Message)	Returns	a	string	representing	the	name	of	the	specified	message.	HandleMessage	(MSG	Message)	subclasses	must	be	used	to	receive	messages.	last	boolean	Hascallbacks(Runnable	R)	Check	for	R-
reconstructed	messages	in	the	message	queues.	Last	boolean	hasmessages	(integer)	check	if	publications	are	waiting	for	"what"	messages	in	the	message	queue.	HasMessages	Boolean	Final	(int	WAS,	Object	object)	'has	been	decoded	and	the	OBJ	message	queue	message	"object"	is	waiting	for	pending	versions.	The	last	message	defines	the	same	but
also	the	same	as	the	sent	message	and	the	OBJ	members	of	the	return	message.	Latest	message	sends	back	a	new	message	from	the	global	message	pool.	The	last	message	is	the	same	as	AncestorMessage(int	WAS,	int	arg1,	int	arg2)	exatMessage().	The	last	message	defines	the	values	of	OBJ,	Arg1,	and	Arg1	and	Arg2	in	the	same,	but	in	the	message
it	rotated,	but	in	the	message	it	rotated.	The	final	message	specifies	the	same	as	ECACéMessage(),	but	specifies	which	member	of	the	returned	message	sets.	Reasons	for	boolean	final	publication	(Runnable	R)Executable	file	for	adding	messages	to	the	queue.	Final	Boolean	PostatFrontOfqueue	(Runnable	R)	posts	a	message	to	the	object	implementing
Runnable.	Final	Boolean	PostAttime	(Runnable	R,	Long	UpTimeMillis)	causes	the	retable	file	to	be	added	to	the	message	queue	at	the	time	specified	by	UpTimeMillis.	Final	Boolean	PostAttime	(Runnable	R,	Object	Token,	Long	UpTimeMillis)	causes	the	retable	file	added	to	the	message	queue	to	be	launched	at	a	specific	UpTimeMillis	time.	The	final
boolean	pandelayed	(Runnable	R,	Long	Delayillis)	causes	Runnable	R	to	be	added	to	message	queues	for	execution	after	a	certain	time.	Final	boolean	pandelayed	(Runnable	R,	Object	Token,	Long	Delamillis)	means	that	Runnable	R	will	be	added	to	the	message	queue	and	will	be	realized	after	some	time.	Final	void	removecallbacks	(runnable	r)
Remove	pending	runnable	R	messages	from	message	queues.	Final	voidReMoveCallbacks	(Runnable	R,	Object	Token)	Deletes	all	messages	waiting	for	the	Runnable	R	token	from	the	message	queue.	Final	void	removecallbackksandmessages	(object	token)	remove	all	feedback	and	messages	sent	to	the	token.	Removing	Trailing	Emptiness	(int	What)
Purges	expecting	"CO"	messages	from	the	message	queue.	Removing	trailing	void	(int	What,	object	object)	Delete	all	messages	waiting	for	scrambled	messages	using	"What"	and	Revri	"Object"	from	message	queues.	Final	Boolean	SendEmptyMessage	(int	What)	sends	a	message	containing	only	what.	Final	Boolean	SendEmptyMessageatTime	(int
What,	Long	Uptimillis)	sends	a	message	containing	only	what	needs	to	be	delivered	at	a	specified	time.	The	final	boolean	sendEmSessageDaed	(int	What,	Long	Delamillis)	sends	a	message	containing	only	what	needs	to	be	delivered	after	some	time.	Final	Boolean	SendMessage	(Message	MSG)	sends	a	message	to	the	end	of	the	message	queue	after	all
waiting	for	messages	before	the	current	time.	Final	boolean	SendMessageAtFrontofqueue	(message)	Place	the	message	in	the	queue	in	front	of	the	message	queue	for	processing	in	the	next	iteration	of	the	message	loop.	Boolean	SendMessageatTime(Message	message,	Long	UpTimeMillis)	Receives	a	message	in	the	message	queue	after	everyone
expected	messages	with	a	ruthless	duration	(in	milliseconds)	before	UpTimeMillis.	Final	Boolean	SendMessagedeElayed	(message,	Long	Delamillis)	Insert	the	message	into	the	messageAfter	all	the	previously	expected	reports	(valid	time	+	militia	delay).	String	to	Entity	()	returns	the	view	of	the	object	string.	The	clone	object	()	of	the	Java.lang.object
class	creates	and	revolves	a	copy	of	that	object.	Boolean	Equals	(OBJ	object)	indicates	whether	another	object	is	"equal".	VOID	Complete	()	is	called	on	an	object	by	the	Garbage	Collector	when	it	determines	that	the	object	has	no	more	applications.	Last	Class	Getclass	()	returns	Runtime	class	of	this	object.	Int	hashcode	()	returns	the	hashcode	value
of	the	object.	Final	Void	Nodify	()	awakens	the	only	thread	in	the	monitor	of	this	object.	Final	Void	Nodifyell	()	awakens	all	the	work	particles	waiting	in	the	monitor	of	this	object.	String	to	Entity	()	returns	the	view	of	the	object	string.	Last	Void	Wait	(Long	Exit,	Int	Nanos)	meant	that	current	work	awaits	until	it	reactivates	using	stops	or	stops	or	until
it	spends	some	real	time.	The	latest	non	-valid	wait	(long	-term	limeoutmillis)	causes	the	valid	thread	to	wait	until	it	normally	receives	or	stops	with	a	notification	or	until	it	spends	some	real	time.	Final	Void	Wait	()	Usually	makes	a	valid	thread	awaits	to	wake	up	with	a	notification	or	deduction.	Public	Hander	()	was	removed	from	this	constructive	use.
The	indirect	choice	of	the	cycler	in	creating	the	processor	can	lead	to	errors	in	which	the	operations	are	lost	silently	(if	the	processor	does	not	wait	for	new	activities	and	termination),	crash	(if	the	processor	is	created	on	a	thread	without	effective	puppets)	or	in	conditions	of	competition.	Places	where	the	operator	is	not	what	the	author	expected.
Instead,	uses	executive	or	looper#Getmainloper,	{Link	Android.View.View	uses	the	new	reading	operator	(Looper.mylooper	())	if	required	for	native	behavior	for	compatibility.	The	default	manufacturer	connects	this	operator	to	a	cycle	with	a	valid	thread.	If	it	has	a	cycle,	it	will	not	be	able	to	receive	messages	from	the	processor,	therefore	an
exception	is	generated.	The	generic	manager	(Handler.callback	Calling)	was	removed	from	this	constructive	use.	Cycler's	implicit	selection	during	the	creation	of	the	processor	can	lead	to	errors	in	which	transactions	are	lost	silently	(if	the	processor	does	not	wait	for	new	activities	and	comes	out),	crash	(if	the	processor	is	created	in	a	thread	without
effective	puppets)Racial	conditions	in	which	the	fiber	to	which	the	manager	is	linked	differs	from	what	the	author	expected.	Instead,	use	the	executor	or	explicitly	determine	the	looper	using	the#Getmainlooper	looper,	{Link	Android.View.View#Gethandler}	or	the	like.	If	local	behavior	is	needed	under	the	thread	for	compatibility,	use	a	new	manager
(Looper.mylooper	(),	recall)	to	explain	it	to	readers.	The	manufacturer	binds	this	service	program	to	the	looper	for	current	fiber	and	uses	the	call	in	which	the	messages	can	be	developed.	If	there	is	no	loop	in	this	thread,	this	manager	will	not	be	able	to	receive	messages,	therefore	an	exception	is	caused.	Parameters	that	calls	handler.callback:
interface	to	return	calls	for	the	processing	of	messages	or	nulls.	The	public	manager	(Looper	Looper)	uses	the	looper	delivered	instead	of	the	default	value.	Loop	parameters:	the	cycle	cannot	be	empty.	Public	Handler	(Loops,	Handler.Callback	callback)	Use	the	looper	delivered	instead	of	the	default	setting	and	use	the	interface	called	to	process	the
messages.	Loop	parameters:	the	cycle	cannot	be	empty.	Handler	of	callback.callback:	caller	interface	for	the	processing	of	messages	or	null.	CreateSync	Public	Static	Program	(Loop,	Handler.Callback)	Create	a	new	service	program	whose	output	messages	and	executable	files	are	not	subject	to	obstacles	to	synchronization,	such	as	the	mapping	of
Vsync.	It	is	guaranteed	that	the	messages	sent	to	the	asynchronous	service	program	will	go	well	towards	each	other,	but	not	necessarily	as	regards	the	relationships	of	other	service	routines.	Loop	parameters:	a	cycle	to	which	a	new	driver	should	be	tied.	This	value	cannot	be	empty.	Handler	of	callback.callback:	this	value	cannot	be	empty.	Returns	a
new	instance	of	an	asynchronous	manager	to	the	manager.	This	value	cannot	be	empty.	See	also:	creation	of	an	asynchronous	service	program	without	sending	messages.	The	public	static	service	program	(Loop)	CreateeSync	creates	a	new	service	program	whose	output	messages	and	executable	files	are	not	subject	to	synchronization	barriers	such
as	Vesync's	mapping.	It	is	guaranteed	that	the	messages	sent	to	the	asynchronous	service	program	will	go	well	towards	each	other,	but	not	necessarily	as	regards	the	relationships	of	other	service	routines.	Loop	parameters:	a	cycle	to	which	a	new	driver	should	be	tied.	This	value	cannot	be	empty.	Returns	a	new	instance	of	an	asynchronous	manager
to	the	manager.	This	value	cannot	be	empty.	See	also:	creation	of	an	asynchronous	service	program	by	sending	messages.	Public	Void	ShippingMessage	(Message	MSG)	is	processed	here	system	messages.	OptionsMessage:	This	value	cannot	be	wrong	and	wrong.	General	final	void	dump	(PW	printers,	line	prefix)	PW	printing	parameters:	These	values
cannot	be	wrong	and	wrong.	Prefix	sign:	This	value	cannot	be	wrong	and	wrong.	The	general	line	returns	to	the	knee	and	indicates	the	name	of	the	report	"Getmessagenam"	(message).	The	standard	application	contains	the	title	of	the	news	class	if	one	or	September,	if	such	or	September.	Parameter	exercise:	It	is	worth	the	name	that	the	value	cannot
be	wrong	and	wrong.	This	value	returns	a	line	that	cannot	be	wrong	and	wrong.	MSG	classes	(public	space	element)	should	be	used	to	receive	messages.	MSG	messages	parameters:	This	value	cannot	be	wrong	and	wrong.	Public	logical	Hascallbacs	(Runnable	R)	Check	whether	the	waiting	queue	of	messages	is	waiting	for	messages	via	messages.	The
R	parameters	can	be	operated:	this	value	cannot	be	wrong	and	empty.	General	final	logical	HASMESSAGES	(Int	was)	Check	whether	displays	are	waiting	for	messages	with	the	code	in	the	message	queue.	The	general	final	Booolean	Hasmessages	(Int,	what,	object	object)	checks	the	number	of	messages	that	are	waiting	with	the	code	"Co"	and	the
object	in	the	queue	of	the	message	"Promise".	Object	parameter:	This	value	can	be	empty.	The	total	number	of	the	final	message	"Getingmessage"	(Int	was,	Object	Rev.	is	the	same	as	Gingmessage	(),	but	also	determines	the	Rev.	members	who	return	through	the	message.	Parameters	which	int:	value	to	return	the	message.	Which	Area.	Explain:



Leave	yourself	to	assign	a	turned	message.	This	value	can	be	wrong.	If	a	message	from	the	World	Message	Fund	can	be	returned.	This	value	cannot	be	wrong	and	wrong.	The	last	message	for	Gingmessage	()	gives	one	New	message	from	Global	Message	Foundation	back.	Creating	and	distributing	new	examples	is	more	effective.	The	report	contains
this	sample	manager	(message.arget	==	to).	If	you	do	not	want	this	device,	call.	Cordain	()	address.	This	value	gives	this	value	A	message	back	that	cannot	be	wrong	and	wrong.	The	last	message	of	society	is	determined	by	members	of	Getgemessage	(Int	was,	int	Arg1,	te	Arg2)	and	Gingmessage	(),	from	He	also	returned	the	turned	message	to
members	of	ARG1	and	ARG2.	Parameters	which	int:	value	to	return	the	message.	Which	area.	ARG1	IT:	Leave	yourself	to	assign	a	Rotary	message.	Area	G1.	ARG2	INT:	assign	the	message	to	the	value	rotation.	Area	G2.	Gives	back	a	message	from	the	World	Message	Fund.	This	value	cannot	be	wrong	and	wrong.	General	last	post(Int	what,	Int	Arg1,
volume)	is	like	an	eavemessage	(),	except	that	it	also	determines	the	values	that	return	to	the	ARG1	and	ArG2.	Parameters,	what	value:	the	value	to	be	given	to	the	returned	message.	What	field.	ArG1	int:	The	value	to	be	given	to	the	returned	message.	Argo1.	ArG2	int:	value	to	be	assigned	to	ARE.AG2.	St.	This	value	can	be	zero.	Return	the	message
from	a	set	of	global	messages.	This	value	cannot	be	zero.	The	public	final	report	receives	a	message	(Int	Co)	as	EAVEMESSAGE	(),	except	that	he	also	determines	himself	as	a	member	of	the	return.	Parameters,	what	value:	the	value	to	be	given	to	the	returned	message.	What	field.	Return	the	message	from	a	set	of	global	messages.	This	value	cannot
be	zero.	Public	Logical	Post	(Executive	R)	includes	adding	messages	to	the	tail.	The	race	will	be	made	in	the	thread	to	which	this	manager	is	connected.	Runnable:	Runnable	parameters	action.	This	value	cannot	be	zero.	Returns	Bow,	returns	the	truth	if	the	department's	object	was	properly	introduced	in	the	message	queue.	In	the	event	of	a	mistake,
he	returns	false,	usually	because	he	develops	a	message.	Public	Final	Booolean	Pestatfrontofqueue	(Runnable	R)	publishes	a	message	on	the	subject	that	is	performing	performance.	This	will	make	sure	that	the	Row	will	be	made	for	later	repetition.	The	race	will	be	made	in	the	thread	to	which	this	manager	is	connected.	This	method	is	only	for	use	in
very	special	conditions:	it	can	easily	perform	a	row	of	messages,	cause	system	problems	or	with	other	unexpected	side	effects.	Runnable:	Runnable	parameters	action.	This	value	cannot	be	zero.	Back	Bull	returns	true	if	the	message	was	properly	introduced	in	the	message	line.	In	the	event	of	a	mistake,	he	returns	false,	usually	because	he	develops	a
message.	The	logic	of	the	public	end	(executable	R,	Long	Uptmememillis)	means	that	the	messages	are	added	to	the	message	queue	at	a	given	moment	by	Uptmemillis.	The	basis	of	time	is	Systemclock.Ptimemillis	().	The	time	spent	during	deep	sleep	will	increase	further	delay.	The	race	will	be	made	in	the	thread	to	which	this	manager	is	connected.
Runnable:	Runnable	parameters	action.	This	value	cannot	be	zero.	Upttimemillis	Long:	Absolute	time	when	calling	should	be	done	using	usingThe	main	time.	Returns	the	bow,	returns	the	truth	when	the	run	is	properly	placed	in	the	news	line.	In	case	of	errors,	it	usually	returns,	usually	because	the	cycle	that	processes	the	message	line	is	over.	Please
note	that	the	true	result	does	not	mean	that	the	execution	is	processed:	if	the	cycle	is	closed	before	the	news	is	closed,	the	message	is	deleted.	Public	final	Boolean	Posttime	(Runnable	R,	Object	token,	Long	uptmemillis)	means	that	the	message	line	is	added	to	uptMemillis	at	a	certain	point	in	time.	The	basis	of	time	is	SystemClock.ptimemillis	().	The
time	spent	during	deep	sleep	is	another	delay.	The	manager	is	carried	out	in	the	stream	to	which	the	manager	is	connected.	Launching	parameters:	law	enforcement	officers.	This	value	cannot	be	zero.	Object	token:	A	case	with	which	you	can	cancel	RemoVeCallbacksandMessages	(object).	This	value	can	be	zero.	UptMemillis	Long:	Absolute	time	for
calls	using	SystemClock.ptmemillis	().	Returns	the	bow,	returns	the	truth	when	the	run	is	properly	placed	in	the	news	line.	In	case	of	errors,	it	usually	returns,	usually	because	the	cycle	that	processes	the	message	line	is	over.	Please	note	that	the	true	result	does	not	mean	that	the	execution	is	processed:	if	the	cycle	is	closed	before	the	news	is	closed,
the	message	is	deleted.	See	also:	SystemClock.ptimillis	()	Public	final	after	delay	(executable	file	R,	Long	Delesmillis)	meant	that	the	executive	R	was	added	in	the	message	queue,	which	was	adopted	after	a	certain	period	of	time.	The	manager	is	carried	out	in	the	stream	to	which	the	manager	is	connected.	The	basis	of	time	is	SystemClock.ptimemillis
().	The	time	spent	during	deep	sleep	is	another	delay.	Launching	parameters:	law	enforcement	officers.	This	value	cannot	be	zero.	Delay	Millis	Long:	delay	(millisecond)	to	the	executable	file.	Returns	the	bow,	returns	the	truth	when	the	run	is	properly	placed	in	the	news	line.	In	case	of	errors,	it	usually	returns,	usually	because	the	cycle	that	processes
the	message	line	is	over.	Please	note	that	the	true	result	does	not	mean	that	the	execution	is	processed:	if	the	cycle	is	closed	before	the	news	is	closed,	the	message	is	deleted.	Public	Final	Booleean	PostDelaed	(Runnable	R,	Tocument	token,	Long	Doledmillis)	make	sure	that	the	run	should	be	addedA	queue	that	is	to	be	started	after	the	specified	time.
Runnable	is	initiated	in	the	stream	with	which	the	operator	is	connected.	Time	base	-	systemclock.UPTIMEMILLIS	().	The	time	spent	in	deep	sleep	leads	to	a	further	delay	in	the	execution.	Runnable:	ongoing	parameters	that	are	to	be	ended.	This	value	must	not	be	zero.	Token	object:	A	copy	that	can	be	used	to	cancel	R	via
Removecallbackandmessages	(Object).	This	value	can	be	zero.	Lang:	Delay	before	running	(in	Milisaniye).	Runnable	returns	the	logical	value	if	it	has	been	successfully	inserted	into	the	message	amount.	If	an	error	occurs,	he	turns	to	the	forgery,	usually	the	Macemaker	completes	the	Macemaker,	which	processes	the	message	queues.	Conclusion
correctly,	please	note	that	running	does	not	mean	that	it	is	processed	-	the	message	is	suppressed	if	the	cycle	is	deactivated	before	the	transmission	time	arrives.	Delete	all	outstanding	news	from	running	in	relation	to	messages,	regarding	messages.	Operating	parameters:	This	value	must	not	be	zero.	General	Final	Vood	Remocallbacks	(Runnables,
Object	Cypoon)	removes	all	the	expected	messages	from	running	with	the	subject	of	the	object	in	the	newspaper.	If	the	part	is	zero,	all	backward	calls	are	removed.	Operating	parameters:	This	value	must	not	be	zero.	Token	object:	This	value	can	be	zero.	Public	Last	Vood	Remocallback	Sand	Messags	(item	Coin),	all	outstanding	items	with	reverse
challenge	reports	and	messages	sent	with	an	item.	When	the	coin	is	zero,	all	calls	and	messages	made	are	removed.	Marker	Parameters	Object:	This	value	can	be	zero.	Vood	Public's	latest	Remomomessage	(Int	What)	is	waiting	to	post	messages	with	the	code	"Ne"	during	the	messages.	Public	Final	Vood	RemomessageesGeng	(Int	What,	Object	Object)
receives	everything	that	is	waiting	for	the	sending	of	messages	with	the	code	"What"	and	the	subject	"The	Object",	the	objects	of	which	are	in	the	chaos	of	the	messages.	If	the	object	exists,	all	messages	will	be	deleted.	Parameter	of	the	Int-object	int:	This	value	can	be	zero.	The	public	sends	a	message	that	only	contains	the	value	of	Sendempmessage
(Int	ne).	If	the	message	has	been	successfully	placed	in	the	news	keeper,	it	returns	the	logical	value.	If	an	error	occurs,	he	turns	to	the	forgery,	usually	the	Macemaker	completes	the	Macemaker,	which	processes	the	message	queues.	The	public	broadcasting	time	(Int,	Long	Uptimemillis)	sends	a	message	that	only	contains	what	needs	to	be	delivered
at	a	certain	point	in	time.	UpTimeMillis	length	of	the	rotary	parametersReturns	True	if	the	message	was	successfully	included	in	the	queue.	In	the	case	of	a	malfunction,	false	value,	as	a	rule,	because	the	processing	of	the	cycle	in	the	line	of	the	message	is	closed.	See	also:	SendMessageTtime	(Android.os.message,	Long)	Public	Final	Boolean
Sendemptymessageed	(Int,	a	long	delay)	sends	a	message	containing	only	some	value	that	will	be	delivered	after	the	specified	delay.	What	int	Do	Do	Do	-Millis	Long	returns	Boolean	returns	the	true	value	if	the	message	was	successfully	included	in	the	queue.	In	the	case	of	a	malfunction,	false	value,	as	a	rule,	because	the	processing	of	the	cycle	in	the
line	of	the	message	is	closed.	See	also:	SendMessageDelayed	(Android.os.message,	Long)	Public	Final	Boolean	SendMessage	(Message)	Sends	at	the	end	of	the	message	queue	after	all	the	reports	of	waiting	for	up	to	the	current	time.	This	will	be	accepted	in	the	manipulation	(message)	in	the	stream	attached	to	this	handler.	MSG	message	parameters:
this	value	cannot	be	zero.	Boolean	returns	the	value	of	True	if	the	message	was	successfully	included	in	the	queue.	In	the	case	of	a	malfunction,	false	value,	as	a	rule,	because	the	processing	of	the	cycle	in	the	line	of	the	message	is	closed.	Public	final	logical	SendMessageatfrontFqueue	(message)	Place	the	message	at	the	beginning	of	the	message
queue,	which	will	be	processed	in	a	different	Image	of	the	message	cycle.	You	will	receive	it	in	the	description	(message)	in	the	stream	attached	to	this	handler.	This	method	should	be	used	only	in	very	specific	circumstances	-	it	can	easily	starve,	cause	assessment	problems	or	other	unintentional	side	effects.	MSG	message	parameters:	this	value
cannot	be	zero.	Boolean	returns	the	value	of	True	if	the	message	was	successfully	included	in	the	queue.	In	the	case	of	a	malfunction,	false	value,	as	a	rule,	because	the	processing	of	the	cycle	in	the	line	of	the	message	is	closed.	Public	Boolean	Sendmessageattime	(message	message,	Long	uptimemillis)	puts	a	message	in	the	queue	after	all	messages
awaiting	up	to	absolute	time	(in	milliseconds)	Uptimemillis.	Temporary	base	-	SystemClock.uptimemillis	().	The	time	spent	in	deep	sleep	will	extend	performance.	You	will	receive	it	in	the	description	(message)	in	the	stream	attached	to	this	handler.	MSG	message	parameters:	this	value	cannot	be	zero.	Uptimemillis	Long:	the	absolute	time	when	the
message	should	be	delivered	using	the	temporary	base	SystemClock.uptimemillis	().	Boolean	returns	the	value	of	True	if	the	message	was	successfully	included	in	the	queue.	Returns	a	lieAn	error,	usually	because	the	loop	handler	handling	the	message	queue	terminates.	Note	that	a	TRUE	result	does	not	mean	that	the	message	has	been	processed:	if
the	loop	terminates	before	the	message	delivery	time	expires,	the	message	is	discarded.	SendMessagedeED	public	final	boolean	(	msg	,	long	delayIndicator	)	Insert	a	message	into	the	message	queue	after	all	pending	messages	before	it	(	current	time	+	delayIndicator	).	You	will	receive	this	in	a	description	message	(message)	in	the	thread	attached	to
this	handler.	Parameter	Message	Message:	This	value	cannot	be	null.	DelayMillis	Long	Returns	Boolean	Returns	True	if	the	message	was	successfully	queued.	Returns	false	on	error,	usually	because	the	message	queue	handler	exits.	Note	that	a	TRUE	result	does	not	mean	that	the	message	has	been	processed:	if	the	loop	terminates	before	the
message	delivery	time	expires,	the	message	is	discarded.	public	String	toString()	returns	the	string	representation	of	the	object.	In	general,	the	toString	method	returns	a	string	that	"textually	represents"	this	object.	The	result	should	be	a	concise	but	informative	presentation	that	is	easy	for	humans	to	read.	We	recommend	ignoring	all	subclasses.
toString	method	on	a	class	object	Returns	a	string	consisting	of	the	name	of	the	class	that	the	object	is	an	instance	of,	the	"@"	character,	and	the	unsigned	hexadecimal	hash	representation	of	the	object.	In	other	words,	this	method	returns	a	string	equal	to	the	getClass()	value.	GetName()	+	'@'	+	integer.toHexstring(hashCode())	returns	a	string
representation	of	a	string	object.	Object.




